DTIC FILE CORY | ' | REPORT COÇUM | IENTATION F | PAGE | | f | |---|-----------------------------------|------------------------|----------------------------|------------------|--------------| | A 10 | LEUIE | 16. RESTRICTIVE A | MARKINGS | | | | AD-A197 122 | JUL 2 2 1988 | | AVAILABILITY OF | | | | | ξ | * | OR PUBLIC RETION UNLIMIT | | 1 | | | | | | | | | 4. PERFORMING ORGANIZATION REPORT NUMBER | | 5. MONITORING C | ORGANIZATION REP | ORT NUMBER(S) | 1 | | ONR TECHNICAL REPORT #88-3 | | | | | | | 6a. NAME OF PERFORMING ORGANIZATION | 6b. OFFICE SYMBOL (If applicable) | | NITORING ORGANI | | | | WASHINGTON UNIVERSITY | (ii oppiicosic) | OFFICE OF | NAVAL RESEAR | CH (CODE 1: | 142PT) | | 6c ADDRESS (Gry. State, and ZIP Code)
660 S. EUCLID, BOX 8111, DEP | 7. OF VEIDO | 76. ADDRESS (Cin | State and ZIP Co | ode) | CD44C | | ST. LOUIS, MO 63110 | r. Of NEURO., | | QUINCY STREE | | JUKAMS | | 31. 10013, FR 03110 | | | VA 22217-50 | | į | | Sa. NAME OF FUNDING / SPONSORING | 86. OFFICE SYMBOL | | INSTRUMENT IDE | | MBER | | ORGANIZATION | (If applicable) | N00014-86- | 0289 | | 1 | | Sc. ADDRESS (City, State, and ZIP Code) | | 10. SOURCE OF F | UNDING NUMBERS | | | | | | PROGRAM
ELEMENT NO. | PROJECT
NO. | TASK
NO. | WORK UNIT | | | | 61153N | RR04206 | RR04206-QA | | | 11 TITLE (Include Security Classification) | | | | | | | Attentional Imbalance | s Following Head | Iniury | | | ı | | 12. PERSONAL AUTHOR(S) Jennifer Sand | | | I Posper | | | | Peggy P. Barco. | | | | | 1 | | 13a TYPE OF REPORT 13b. TIME (| | | RT (Year, Month, D | 15. PAGE' 25 | COUNT | | 16. SUPPLEMENTARY NOTATION | | | | | | | | | | | | | | 17 COSATI CODES FIELD GROUP SUB-GROUP | 18 SUBJECT TERMS (| Continue on revers | e if necessary and | identify by bloc | k number) | | FIELD GROUP SUB-GROUP | - | | | | | | | | | | |] | | 19. ABSTRACT (Continue on reverse if necessar | | | | | , _ | | We have employed three attention, with a population | | | | | | | Each of the tasks had been v | alidated by stud | ies with uni | lateral stro | ke patient | s and | | appear to provide a means of | examining the r | elative effi | ciency of th | e two cerel | oral | | hemispheres when demands upo | | | | | of the | | six patients had imbalances definition of attentional be | | | | | 1115 | | show that the three tests co | | | | | | | these brain injury patients | and may relate t | o some aspec | ts of their | normal fund | ctioning. | | | · / / / / 4 | , | | | - | | * | • | • | , , , | • | | | \ | | | | | | | CO DISTRIBUTION AVAILABILITY OF ABSTRAC | | | ECURITY CLASSIFIC | ATION | | | UNCLASSIFIED/UNLIMITED A SAME AS 122 NAME OF RESPONSIBLE INDIVIDUAL | RPT DTIC USERS | | | 1 222 00000 0 | (1400) | | MICHAEL I. POSHER | | (314) 362- | (include Area Code
3317 | ONR 11 | | | DD 50234 1472 A | | | | | | ### ATTENTIONAL IMBALANCES FOLLOWING HEAD INJURY Jennifer Sandson, Bruce Crosson, Michael I. Posner, Peggy P. Barco, Craig A. Velozo and Teresa C. Brobeck ONR Technical Report 88-3 Research sponsored by: Personnel and Training Research Program Psychological Science Division, Office of Naval Research Under Control Number: Contract Authority Number: N00014-86-K-0289 NR-442a554 Reproduction in whole or part is permitted for any purpose of the United States Government ### ATTENTIONAL IMBALANCES FOLLOWING HEAD INJURY: A Preliminary Analysis of Six Patients¹ Jennifer Sandson*,2, Bruce Crosson*,#, Michael I. Posner* Peggy P. Barco*, Craig A. Velozo* and Teresa C. Brobeck* Washington University School of Medicine, St. Louis * Departments of Neurology and Neurological Surgery CONTRACTOR - # Head Injury Resource Center, Irene W. Johnson Institute of Rehabilitation - This research was supported by the Office of Naval Research Contract N-0014-86-0239. - Reprints can be obtained by writing to Neuropsychology Laboratory, Box 8111, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110. - Now at Department of Neurology, University of Maryland School of Medicine, 22 S. Greene, Baltimore, MD 21201. ### ABSTRACT We have employed three tasks, developed by cognitive psychologists to study attention, with a population of six brain injured subjects in a rehabilitation program. Each of the tasks had been validated by studies with unilateral stroke patients and appear to provide a means of examining the relative efficiency of the two cerebral hemisphere when demands upon them are placed in conflict. We found that five of the six patients had imbalances between the two hemispheres. Four of them met our definition of attentional because the imbalance interacted with cues. The results show that the three tests converge on a common picture of cerebral imbalances in these brain injury patients and may relate to some aspects of their normal functioning. | Acce | ssion | For | | | | |-------------------|--------|-------|------|----|-----| | 1 | GRA& | I | | V | | | PILL | | | | | | | | io moe | | | [] | | | ្ ស៊ីម ន ា | :fioet | ion | | | | | | | | | | | | Bv | | | | | | | Distr | ibut1 | on/ | | | | | Avai | labil | lty | Cod | es | _ | | | Avati | an | J/01 | | | | Dist | Spe | ્ i હ | 1 | | | | | 1 | | | | - 1 | | 1-1 | | | | | - 1 | | n | Ì | | | | ı | Unilateral left and right hemisphere lesions produce numerous well documented neuropsychological consequences (DeRenzi, 1982). Some of these sequele are attentional (Nissen, 1986; Posner & Rafal, 1986), involving anatomical systems related to the selection of information for conscious detection. Such attentional deficits can often be demonstrated in tasks involving conflict between stimuli (Posner & Presti, 1987). For example, patients with left hemisphere lesions have difficulty selecting a verbal input when it conflicts with a simultaneous spatial command. Patients with right hemisphere damage show the reverse pattern (Walker, Posner & Friedrich, 1983). Similarly, patients with parietal lobe lesions often have great difficulty when an event in the contralesional visual field is in conflict with one in the ipsilesional field. In severe cases these patients may be completely unaware of contralesional targets while in milder cases the target may be detected but with longer latency (DeRenzi, 1982; Posner, Walker, Friedrich & Rafal, 1984). These findings from patients with focal unilateral lesions demonstrate the value of cognitive tests for the precise measurement of attentional deficits related to hemisphere imbalance (Posner & Rafal, 1986). The conflict tasks, for example, detect residual attentional imbalance well after standard neurological methods suggest that the patient's performance is normal (Posner, et al, 1984). Clinical neurology has long used imbalances between the two eyes as a means of detecting subtle insults to the cranial nerves at the level of the midbrain (Mesulam, 1985). In recent years there has been much evidence of the specialization of the two cerebral hemispheres in the performance of higher level cognitive and emotional activity (Mesulam, 1985). It seems likely the imbalances between the two cerebral hemispheres, as reflected by cognitive tasks involving conflict may be of similar benefit in clinical neuropsychology. To explore this hypothesis it is of importance to measure these imbalances and to relate them to everyday behaviors likely to be differentially mediated by the two cerebral hemispheres. THE PROPERTY OF O It is now common for patients recovering from closed head injury to spend an extended period of time in a rehabilitation program, often supervised by a clinical psychologist. The opportunity for extended detailed observation of their classroom and extracurricular performance makes patients participating in such programs ideal subjects for relating attentional imbalances to disturbances in everyday behaviors. As a step toward investigating this relationship, six patients undergoing therapy at the Head Injury Resource Center of Washington University were tested with several standard neuropsychological tests and three special attentional paradigm; sensitive to attentional deficits in patients with unilateral lesions. We then examined clinical ratings of their academic performance and social interaction to determine if imbalances found in our tests might relate to aspects of everyday life THEORY SERVED STREET involving attention. Because of the limited sample size this study serves primarily to provide validation of our tests to individual brain injured patients and as pilot data toward the goal of relating attentional imbalances to natural performance. ### COGNITIVE ATTENTION TASKS Covert orienting of visual spatial attention (Task 1) (Posner & Presti, 1987; Posner et al, 1984). This task involves the detection of a target stimulus (an asterisk) which occurs within one of two boxes located five degrees to the left or right of a fixation cross (Figure 1). Trials are either cued (80%) or uncued (20%). Cues consist of a brightening of one of the two peripheral boxes and remain present until target detection. The majority of cued trials (80%) are valid, with the targets occurring on the brightened side. The remaining 20% of the cued trials are invalid, with the target occurring on the side that is not brightened. Inter-trial interval is 1000 msec for cued and uncued trials. The interval between brightening of a peripheral box and target onset was either 100 or 800 msec for the cued trials (valid and invalid). Uncued targets occurred 1100 or 1900 msec following previous target onset. Subjects received three blocks of 254 trials. Instructions were to fixate on the central cross and to press the single response key with the index finger of the dominant hand as rapidly as possible following target detection. Subjects were informed that most trials would be cued and that most cues
would be valid. ### Fig. 1 Covert Orienting of Spatial Attention with Central Cues (Task 2) (Posner, 1980; Posner, et al, 1984). The purpose of this task was to study orienting from central rather than peripheral cues. With the exception of cue location, the design was very similar to that of Task 1. Cues consisted of either a directional arrow (80% valid) or a neutral plus sign. Subjects were explicitly instructed to shift their attention, but not their eyes, in the direction indicated by the arrow. Targets followed cue onset at intervals of 100, 500, 800 or 1000 msec. Selective Attention to Linguistic and Spatial Information (Task 3) (Posner & Henik, 1982; Walker, Friedrich & Posner, 1983). As described above, this task involves selective attention to a specified stimulus mode (spatial or linguistic). For each block, subjects were instructed to attend to one of two types of information (arrow or word). They had to press one of two keys depending on whether the instructed stimulus mode indicated 'left' or 'right'. The attended stimulus was presented in one of three conditions: either alone, with redundant information or conflicting information from the unattended modality. Redundant and conflicting stimuli were centered on the CRT and arrayed vertically (Figure 2). These three stimulus conditions were randomly mixed within a 96 trial block. Blocks were presented within an ABBA/BAAB design (A = attend arrow, B \approx attend word). ### Fig. 2 Although never published, we had studied unilateral stroke patients on a task similar to 3, but never published the data (Walker, Posner & Friedrich, 1987). Since the current version was slightly different, we ran 12 normal subjects, six patients with unilateral right hemisphere lesions (from strokes) and three patients with unilateral left hemisphere lesions (from strokes) to validate our previous results. The results conformed well to our previous findings and are shown in Table 1. For the normal subjects, there was no significant difference in RT between the attend arrow and the attend word instructions and the two conditions yielded approximately equivalent interfering effects when placed in conflict. In contrast, the patients with right hemisphere lesions were slower and made many more errors when attending to an arrow in the conflict situation than when attending to the word. Several found the conflict task so difficult that they responded incorrectly (i.e. on the basis of the conflicting stimulus mode) more than correctly. The left hemisphere damaged patients showed good performance on the arrow condition, but were very slow and made many errors in the word condition. Errors were most common in the word condition. Despite the small sample size, these findings were confirmed with parametric statistical tests. ### Table 1 ### SUBJECTS Subjects were six clients, four male and two female, recruited from the Head Injury Resource Center. All subjects received a formal neuropsychological evaluation as part of the admissions procedure. All were involved in an intensive program of daily therapy and rehabilitation. Both formal neuropsychological and less formal treatment notes were thus available for comparison with cognitive test results. Demographic information pertaining to the six subjects is presented in Table 2. Table 2 ### Group Data The brain injured subjects were compared to twelve normal controls on tasks one and three. The group data for these tasks are shown in Figures 3 and 4. Figure 3 displays median reaction times in Task 1 for valid and invalid trials at the 100 msec cue to target interval. Contamination of the data by eye movements is impossible at this short delay. Non cue trials are from the two delays combined. Inspection of the control data reveals the expected pattern, with valid cues facilitating performance in comparison to invalid cues in both visual fields. The most striking aspect of the grouped head injury data is how closely it resembles the normal pattern. Although slower than controls by approximately 100 msec, the head injured subjects generate the expected pattern of facilitation and inhibition. Figure 4 shows group data for the arrow/word decision (Task 3). Control subjects tend to respond faster to an arrow than to a word and show slightly, but not significantly, more interference of the arrow in the attend word conflict trials than of the word in the attend arrow conflict trials. This pattern is replicated in a slower and exaggerated fashion by the head injured subjects. ### Pig. 3,4 Although many studies have considered patients with closed head injury as a homogenous group, it is clear that differences due to lesion size and location may affect task performance. Combining the data of our six subjects is misleading because differences between subjects are obscured by averaging. It is not surprising then that the resulting pattern differs only in speed from that of healthy controls. It is more useful to look at the patterns of performance of the three tasks in individual subjects, and to attempt to relate these patterns to neuropsychological and observational parameters. ### Individual Subjects Individual patient scores for the three cognitive tests are given in Tables 3, 4 and 5. To simplify the presentation we again present reaction times for valid and invalid trials at the 100 msec interval only. The results for each subject are discussed individually below. Subject 1: Subject 1 shows a pattern of attentional deficits that is consistent across the tasks. At the 100 msec delay, Subject 1 shows a pattern of covert orienting on Task 1 very similar to that seen in patients with left parietal lesion (See Table 3). This pattern is characterized by particular difficulty in shifting attention contralesionally when there has been an ipsilesional cue. It is reflected in very long reaction times to invalidly cued targets in the right visual field. On Task 2 (Table 4), Subject 1 is slower to respond to targets in the right visual field at the 100 msec delay. In addition, the validity effect appears to be larger for right than left sided targets. Subject 1 evidences a large advantage of the arrow over the word on the task of selective attention (Table 5). Moreover, the word shows a much larger interference effect from the arrow in the conflict condition than the arrow shows from the word. In summary, the cognitive tests converge to suggest that subject 1 may have an attention deficit that is Left hemisphere predominant. Neuropsychological test results are consistent with this hypothesis. particular, performance on language measures tapping naming, comprehension, and repetition are well within the aphasic range, indicating significant left-hemisphere dysfunction. Late:alizing measures were somewhat more suggestive of left than right hemisphere dysfunction. Additionally, clinical observations are notable for problems caused by poor memory, inflexibility, and concreteness. These problems are most severe when they interact with linguistic demands. It is worth noting that memory problems were accompanied by confabulation when the patient first entered the program. In addition to the effects on recent memory, the patient's basic fund of knowledge (semantic memory) and remote memory for events (episodic memory) were both impaired. For example, he was sometimes unable to demonstrate any knowledge about the characteristics or uses of familiar objects, and he was sometimes unable to remember significant events in his life as far back as his childhood. Although memory had improved substantially by the end of treatment, evidence of intrusion was still present on formal testing. Subject 1 was consistently unaware of the extent of his deficits and particularly their implications. Interestingly, on the other hand, he shows a strength in his ability to maintain a focus of attention in structured and repetitive tasks, and this proved to be an asset vocationally for him. odd nachrael mederardi rapadda sagana seesaan kaesaan karanga seesaan sacaan sagana bea Subject 2: Subject 2 obtains a pattern of cognitive test results that is almost the opposite of Subject 1 and appears to exemplify a right hemisphere attentional imbalance. This effect is rather weakly demonstrated on Task 1 (Table 3) in which the left visual field is systematically worse than the right only in the invalid condition, but the trend is confirmed on Task 2 (Table 4) where performance is generally worse in the left visual field. Subject 2 is the only subject for whom word processing on Task 3 is faster than arrow processing (Table 5). Interference effects appear to be approximately equal for the arrow and the word. In spite of severe bilateral injury on acute CT scans, neuropsychological test results are most consistent with the right hemisphere deficit hypothesis suggested by the cognitive tasks. Subject 2 obtained a WAIS-R Performance IQ 13 points below his Verbal IQ of 113. Of note, finger tapping is within normal limits for the right index finger but severely impaired for the left. Informal observations, in fact, suggest that subject 2's areas of greatest functional impairment are not in attention but in organization and memory. Although memory tests were generally within normal limits by the end of the program, the pre-program testing had shown a pattern consistent with a consolidation deficit in verbal memory. It is of further interest that Subject 2 often remembers a fact or happening but cannot associate such information with the context in which it occurs. He has difficulty recognizing the memory problem and the implications of this problem, and thus, is not consistent in compensating for this deficit. Finally, he is often noted to show irritability and difficulty with temper control. Subject 3: Subject 3 shows the most complex pattern of the head injured group on cognitive testing—On Task 1 (see Table 3), Subject 3 was slower to respond to invalid stimuli in the left visual field. On
closer inspection, however, the advantage of cues for targets in the left visual field appears to be normal. Targets in the right visual field, in contrast, failed to show a validity effect at the 100 msec delay. Task 2 data (Table 4) provide confirmation of a left rather than a right hemisphere deficit, as detection of right visual field stimuli is much slower than of left visual field stimuli, especially for invalid trials. Performance on the arrow/word task further supports a left hemisphere attentional imbalance with slower processing for the word and a greater interference effect of the arrow (Table 5). Neuropsychological data for Subject 3 are consistent with the cognitive test results. Although not grossly aphasic, Subject 3 shows deficits in many realms of verbal functioning. Like Subject 1, he was impaired in naming and auditory-verbal comprehension, and is especially impaired with repetition. Phoneme and rhythm discrimination were also notably disturbed. There was a right homonymous hemiolopsia and indications of a right visual neglect. Although the left-hemisphere injury is obvious from testing, it is worth noting this subject had a partial right temporal lobectomy. During functional activities in therapies, he does show slowed ability to learn secondary to verbal memory and auditory processing deficits. Yet, this patient demonstrates good nonverbal skills, excellent orientation to his surroundings, and good interpersonal/social skills. In spite of comparatively severe deficits, he demonstrates strengths in his awareness of and ability to compensate for deficits. Subject 4: Subject 4 shows slightly longer RTs toward stimuli in the left visual field at 100 msec on Task 1 (Table 3). In addition, the data reveal difficulty in orienting attention to the left side (no validity effect). Task 2 also reveals a reduced validity effect on the left (Table 4). These results suggest a right hemisphere deficit that involves attention. Data from the arrow/word task (Table 5) show a minimal advantage of spatial over linguistic processing and the symmetric nature of the interference effects are comparible with a slight deficit in right hemisphere processing. While neuropsychological testing of Subject 4 indicated there was some evidence of anterior left hemisphere dysfunction (i.e., Visual Naming and Controlled Oral Word Association were below the 12th percentile), the pattern was generally supportive of right hemisphere predominant dysfunction. For example, her performance IQ was 13 points below her verbal IQ of 91. Although Subject 4 showed a relative strength in Block Design, she demonstrated deficits in attention to visual detail, visual sequencing, puzzle construction, and psychomotor speed. During initial evaluation, she also demonstrated a scanning deficit, omitting items on the left side of the page. These results are consistent with the left frontal injury caused by depressed skull fracture and the posterior right hemisphere contusion visualized on the CT scan. Clinically, residual visual-spatial deficits were apparent in affecting her attention to surroundings and her ability to integrate visual details into an organized whole. Difficulties were also present in mental flexibility, concreteness, interpretation of nonverbal signals, and comprehension of subtleties/humor. Additionally, Subject 4 demonstrated lack of awareness of the deficit areas, as well as their implications in her life. Like Subject 1, Subject 4 was able to sustain attention during structured tasks. Subject 5: Subject 5 stands out on Tasks 1 and 2 in showing a slower RT to left visual field stimuli, thus a right hemisphere deficit that does not interact with cue type and thus does not appear to be attentional in our sense. Performance on Task 3 was better for the arrow than for the word alone. In addition, while word processing was considerably slowed by the presence of conflicting arrows, arrow processing was largely uninfluenced by the presence of conflicting words. Subject 5 showed very few deficits on formal neuropsychological evaluation, and has obtained a Bachelor of Science Degree since her injury. Fine motor coordination was slow bilaterally, more so for the left hand than for the right. The most striking aspect of the neuropsychological examination was a severe deficit on the Tactual Performance Test with the left hand. This latter pattern of performance is generally considered to be suggestive of right parietal dysfunction. Clinically, Subject 5 was characterized by susceptibility to distraction, concreteness, and impulsivity. Her most severe functional deficits, however, were in the areas of social and interpersonal skills, including difficulty recognizing the emotions of others and monitoring appropriate verbal output. Additionally, Subject 5 was unaware of her deficits and their implications into her life. She also was characterized by an inability to experience negative affect. This reduced the likelihood that effective response to confrontation would result in behavior change. Subject 6: Subject 6 shows no evidence of imbalance. Performance on the two spatial orienting tasks is largely symmetric. Reaction times for Task 3 are faster for the arrow than the word alone. Arrow processing, though, was inhibited in both redundant and conflict conditions by the presence of the word while word processing was facilitated by the arrow in the redundant condition and inhibited by the arrow in the conflict condition. In contrast to the weak results on cognitive testing, neuropsychological test results from Subject 6 are compatible with a deficit that is right hemisphere predominant. This is most strikingly indicated by a significantly lower Performance IQ, as compared to Verbal IQ. Testing revealed both verbal and nonverbal memory deficits, with great visual memory impairment apparent than verbal. This pattern of memory impairment would be consistent with the right temporal lobe atrophy on CT scan, although this atrophy may have preceded the injury. Left hand finger tapping was mildly impaired in comparison to the right. Clinically, attentional problems were evident, including attention to detail, attention to surroundings, and concentrating on several items simultaneously. Additional difficulties were observed in organization, integration of the parts into the whole, and in recognition of faces. Subject 6 demonstrated excellent awareness of his deficit areas, as well as good ability to compensate for them. ### DISCUSSION The goal of this project was twofold: 1) to determine if attentional imbalances could be measured in head injured patients using cognitive tasks; and 2) to relate attentional imbalances between the hemispheres to formal and less formal neuropsychological measures. Although our small sample size precludes firm conclusions, several interesting findings emerged. Hemispheric imbalances were found in five of the six brain damaged subjects (all but Subject 6) suggesting that such imbalances may be quite frequent following closed head injury. In our sample, four of the patients with hemispheric imbalances probably had an attentional component to their deficit as evidenced by an interaction between cue type and hemispheric asymmetry on the tasks of covert spatial orienting. Performance on the arrow/word attention task was consistent with the covert orienting task in all four subjects with attentional imbalances. We treated the arrow/word task as attentional because the unilateral patients (see Table 1) had so much more trouble in the conflict situation. An alternative is that the deficit arises in the difficulty of patients in processing the word or arrow condition even when it is not presented with conflicting information. This appears to be particularly true of patient 3. These attentional imbalances occurred in the presence of bilateral injury in all four cases. Some factor such as the comparative location or volume of injury most likely accounts for the imbalance. The presence of both right and left hemisphere imbalances in different patients further demonstrates the importance of considering each patient individually rather than as a homogenous group. These preliminary data raise the issue of whether the imbalances found in the cognitive task are greater than one might expect from the normal population. We have only a little data on this issue. Three of the patients had an imbalance based primarily upon right-left differences in the invalid cue condition of Task 1. These differences are 132, 74 and 48 millisec respectively. Of thirty normal subjects run in this test only three had differences in this condition as large as 50 millisec. At least two of the patient values do seem quite large to be normal. One subject was diagnosed primarily on the lact of a validity effect in one field but not the other. This pattern was detected in only three of our 30 normals. Finally, one patient was diagnosed largely on the reversal of the normal pattern in the arrow/word study and this pattern was larger than we found in any of the twelve normals studied. These findings suggest that the differences found in our patients were the result of the cerebral injuries but further work would be necessar; to establish the general validity of the testing methods. Two of the four patients with attentional imbalance were hypothesized to have greater left hemisphere dyefunction. Both performed well within the aphasic range on several language parameters, and had neuropsychological evaluations consistent with a primary left hemisphere deficit. The remaining two patients with attentional imbalances on cognitive testing were hypothesized to have predominant right hemisphere dysfunction. In addition to other neuropsychological indications of a primary right hemisphere deficit, both patients suffered from social/emotional adjustment problems and depression. A third subject with evidence of greater right hemisphere dysfunction without an imbalance
(Subject 5) suffers from serious social and interpersonal difficulties. This relation may suggest an important link between the imbalance found in cognitive tasks and observational ratings of behavior and personality during therapy. KAN KATATAN PARAMA KATANAN KANDAN PARAMAN PANJAN PANJAN PANJAN PANJANAN PANJANAN PANJANAN PANJANAN PANJANAN PANJANAN Our three tasks appear to converge on the side of primary deficit in most of the head injury patients. In addition, it appears that they relate well to patterns of lateralization in neuropsychological evaluation. It remains to be determined if these tests provide a sufficiently sensitive measure of imbalances to be useful as a tool for diagnosis and recovery. In addition, we need to know much more about the relationship of such imbalances to performance outside the laboratory. A useful step would be to relate performance on cognitive tasks over time to neuropsychological and functional measures of recovery. There is some evidence (e.g. Morrow & Ratcliffe, 1987) that the size of the validity effect on the peripheral orienting task correlates with clinical recovery from left sided visual neglect. Replication and expansion of this result would serve as further evidence for the usefulness of simple cognitive measures in the evaluation of attentional deficits and their remediation. ### REFERENCES - DeRenzi, E. (1982) Disorders of Space Exploration and Cognition. John Wiley, New York. - Mesulam, M. (1985) Mental state assessment of young and elderly adults in behavioral neurology. In Principles of Behavioral Neurology, Mesulam, M. (ed.), F.A. Davis Company. - Mesulam, M. (1981) A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309-325. - Morrow, L.A. & Ratcliffe, G. (1987) Attentional mechanisms in clinical neglect. Journal of Clinical and Experimental Neuropsychology., Vol. 9, Number 1, (Abstract). - Nissen, M.J. (1986) Neuropsychology of attention and memory. Journal of Head Trauma Rehabilitation 1(3):13-21. - Posner, M.I. (1980) Orienting of attention. The 7th Sir F. C. Bartlett Lecture. Quarterly Journal of Experimental Psychology. 32:3-25. - Posner, M.I. & Henik, A. (1983) Isolating representational systems. In J. Beck, B. Hope and A. Rosenfeld (eds.), Human and Machine Vision, New York: Academic Press, 395-412. - Posner, M.I. and Presti, D. (1987) Selective attention and cognitive control. Trends in Neuroscience, 10, 12-17. - Posner, M.I. and Rafal, R. D. (1986) Cognitive theories of attention and the rehabilitation of attentional deficit. In R.J. Meir, L. Diller, and A.C. Benton (eds.), Neuropsychological Rehabilitation. London: Churchill-Livingston. - Posner, M.I., Walker, J.A., Friedrich, F. and Rafal, R. (1984) Effects of parietal lobe injury on covert orienting of visual attention. Journal of Neuroscience, 4, 1863-1874. - Walker, J.A., Friedrich, F. & Posner, M.I. (1983) Spatial conflict in parietal lesions. Paper presented to International Neuropsychological Society, San Diego. ### FIGURE CAPTIONS - Figure 1. Cue conditions for Task 1. Valid trials are ones in which the target occurs on the cued side. Invalid trials are ones in which the target occurs on the opposite side of the cue. - Figure 2. Stimulus conditions for arrow/word task. - Figure 3. Mean Reaction Time as a function of cue condition for Task 1. Data are from valid, invalid and no cue trials for 6 closed head injury patients and 12 normal controls. All cued data are from the 100 msec cue to target condition. - Figure 4. Mean Reaction Time as a function of condition for Task 3. Data are for 6 closed head injury patients and 12 normal controls. ### VALID TRIAL Cue **Target** INVALID TRIAL Cue Target ### FIGURE 2 | | Alone | Redundant | Conflict | |--------------|---------------|---------------|--------------| | Attend Arrow | \rightarrow | \rightarrow | Left | | , | | Right | \leftarrow | | Attend Word | | Right | Right | | | Right | \rightarrow | \leftarrow | TABLE 1 Mean Reaction Times (and Percentage Errors) for the Arrow/Word Task | | | | ARROW | | WORD | | | | | |---------|---------------|------------|-----------|------------|-----------|-----------|-----------|--|--| | | ALONE | | REDUNDANT | CONFLICT | ALONE | REDUNDANT | CONFLICT | | | | RI
N | H
=6 | 700 (10.2) | 800 (4.7) | 378 (43.5) | 738 (5.3) | 760 (2.3) | 801 (2.9) | | | | L.
N | H
=3 | 591 (5.6) | 666 (5.2) | 554 (6.5) | 666 (5.2) | 652 (1.0) | 748 (28.3 | | | | | ONTROL
=12 | 507 (0.5) | 533 (0.5) | 558 (3.1) | 541 (1.8) | 541 (0.8) | 575 (3.3) | | | TABLE 2 SIX HEAD INJURED SUBJECTS | | GENDER | AGE | EDUCATION | TIME POST ONSET | SENSORY DEFICIT | NEUROLOGICAL INFORMATION | |----|--------|-----|-----------|-----------------|---|--| | 1. | М | 28 | 12 | 1 Year | -color blind -right ear -conductive hearing loss -impaired visual tracking with left eye in nasal direction | -rt. frontal hemorrhage -EEG showed abnormal LH activity -lengthy period of post traumatic amnesia and agitation generalized cerebral | | 2. | М | 20 | 12 | 18 months | | -hemorrhage in left sylvian fissure -lucency in left peripheral thalamus + left temporal lobe -lucency in right basal ganglia -craniotomy with evacuation of right temporal hematoma | | 3. | M | 24 | 12 | 1 year | -right homonymous
hemianopia | -left occipital skull fracture -diffuse region of low density in left temporal/parietal occipital area -region of low density in right frontal lobe -right temporal contusion with craniotomy -left to right midline shift | | 4. | F | 24 | 16 | 9 months | | -depressed left frontal skull fracture -left frontal contusion -right occipital/ parietal contusion -left frontal craniotomy with with debridement | | 5. | F | 24 | 16 | 9 years | | -bilateral intracerebral hematomas -frontal & basal ganglia contusions -right frontal subdural hematoma | | 6. | М | 57 | 14 | 2 1/2 yrs. | -5th, 6th, 7th
nerve palsy | -basilar skull fracture
-right temporal
lobe atrophy | TABLE 3 Median RTs (msec) for Brain Injured Subjects in Task 1 As a Function of Visual Field and Validity (100 Millisec Interval) | Subject | VALI | D | INVALID | | | |---------|-------------|--------------|-------------|--------------|--| | 1 | Left
422 | Right
440 | Left
458 | Right
590 | | | 2 | 370 | 380 | 455 | 431 | | | 3 | 412 | 432 | 504 | 430 | | | 4 | 637 | 593 | 629 | 621 | | | 5 | 380 | 322 | 395 | 347 | | | 6 | 344 | 343 | 421 | 398 | | TABLE 4 Median RTs for Brain Injured Subjects in Task 2 As a Function of Visual Field and Validity (100 Millisec Interval) | Subject | VALI | D | INVALID | | | |---------|-------------|--------------|-------------|--------------|--| | 1 | Left
596 | Right
631 | Left
652 | Right
704 | | | 2 | 403 | 392 | 441 | 404 | | | 3 | 504 | 567 | 576 | 783 | | | 4 | 581 | 512 | 608 | 560 | | | 5 | 476 | ¥17 | 545 | 492 | | | 6 | 373 | 382 | 409 | 388 | | TABLE 5 Median RT and Number of Errors () for Brain Injured Subjects in Task 3 as a Function of Condition and Conflict | 1
2
3
4
5
6 | Alone 514 (1) 586 (1) 609 (1) 642 (0) 557 (1) 563 (0) | ARROW Redundant 570 (2) 602 (1) 634 (0) 671 (0) 589 (0) 632 (0) | Conflict 581 (1) 627 (2) 647 (0) 688 (1) 585 (3) 628 (5) | Alone
658 (4)
531 (0)
902 (0)
671 (0)
596 (0)
614 (1) | WORD Redundant 659 (2) 544 (1) 868 (0) 679 (0) 562 (0) 598 (0) | Conflict 736 (11) 555 (1) 978 (2) 708 (0) 671 (3) 629 (0) | |--|---|---|--|---|--|---| | 2
3
4
5
6 | | | | | | | | 334,500 K | | | , | | | | | | | | | | | | | \$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | ece missign | | | 260-200-200-20 | <u>~~~~</u> | <u> </u> | ኒኒኒኒኒኒ ኒኒ | ቊያሲያሲየ ስርየሴሪ ሲያሳጊዮ | | # (MASHINGTON UNIVERSITY/POSNER) 1988/JULY ## Distribution List | | DR. LEON COOPER
BROWN UNIVERSITY
CENTER FOR NEURAL SCI.
PROVIDENCE, RI 02912 | | DR. HAROLD HAWKINS
ONRCODE 1142FT
800 N. QUINCY ST.
ARLINGTON, VA
2217-5000 | PROF. JOHN R. HAYES
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
SCHENLEY PARK | DR. JOAN I. HELLER
SØS HADDON ROAD
OAKLAND, CA 94606 | DR. STEPHANIE DOAN
CODE 6011
NAVAL AIR DEV. CTR.
WAKHINSTER, PA
18974-5000 | DR. EMANUEL DONCHIN
UNIY. OF ILLINOIS
DEPT. OF PSYCHOLOGY
CHAMPAIGN, IL 61830 | MR. RALPH DUSEK
ARD COPORATION
S457 TWINS KNOLLS RD.
SUITE 400
COLUMBLA, MD 31045 | DR. FORD EBNER
BROWN UNIY. MED. SCHOOL
ANATOMY DEPT.
PROVIDENCE, RI 02912 | DR. JEFFREY ELMAN
UCSD
DEPT. OF LING. C-008
LA JOLLA, CA 92093 | |-----------------|--|--|--|--|---
--|---|--|---|---| | | DR. PAT CARPENTER
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
PITTSBURGH, PA 15213 | DR. WAYNE GRAY
ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | DR. BERT GREEN
JOHNS HOPKINS UNIVERSITY
DEPT. OF PSYCHOLOGY
CHARLES & 34TH ST.
BALTIMORE, MD 31218 | DR. JAMES G. GREENO
UNIVERSITY OF CALIF.
BERKELEY, CA 94710 | DR. WILLIAM GREENOUGH
UNIY. OF 11LINOIS
DEPT. OF PSYCHOLOGY
CHAMPAIGN, IL 61820 | DR. STEPHEN GROSSBERG
CTR. FOR ADAPT. SYSTEMS
ROOM 144, BOSTON UNIV.
111 CUMMINGTON STREET
BOSTON, MA 0211S | DR. HENRY M. HALFF
HALFF RESOURCES, INC.
4918 313RD ROAD, NORTH
ARLINGTON, VA 22207 | DR. NANCT F. HALFF
HALFF RESOURCES, INC.
4918 33RD ROAD, NORTH
ARLINGTON, YA 22207 | DR. MUHAMMAD K. HABIB
UNIV. OF NORTH CAROLINA
DEPT. OF BIOSTATISTICS
CHAPEL HILL, NC 27514 | PROF. EDWARD HAERTEL
SCHOOL OF EDUCATION
STANFORD UNIVERSITY
STANFORD, CA 94305 | | nera martantera | DR. GARY ASTON-JONES
DEFT. OF BIOLOGY, NYU
1009 MAIN BLDG.
WA: HINGTON SQUARE
NEW YORK, NY 10003 | DR. LYNN A. COOPER
LEARNING RAD CENTER
UNIV. OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213 | PHIL CUNNIFF
COMMANDING OFFICER
CODE 7311, NAVAL UNDERSEA
WARFARE ENGINEERING
KEYPORT, WA 9834S | BRIAN DALLMAN
3400 TTWITIGXS
LOWRY AFB, CO 80230-5000 | LT. JOHN DEATON
ONR CODE 113
800 N. QUINCY STREET
ARLINGTON, VA 22117-5000 | DR. STANLEY DEUTSCH
COMMITTEE ON HUMAN FACTORS
NAT'L. ACAD. OF SCIENCE
2101 CONSTITUTION AVE.
WASHINGTON, DC 20418 | DR. R. K. DISMUKES
ASSOC. DIR. FOR LIFE SCI.
AFOSR
BOLLING AFB
WASHINGTON, DC 20332 | DR. DANIEL GOPHER
IND. ENG. & MANAGEMENT
TECHNION
HAJFA 33000
ISRAEL | DR. SHERRIE GOTT
AFHRLMODJ
BROOKS AFB, TX 78135 | JORDAN GRAFMAN, PILD.
1021 LYTTONSVILLE ROAD
SILVER SPRING, MD 20910 | | | DR. TYRONE CASHMAN
AMER. SOC. OF CYBERNETICS
3428 FREMONT AVE. SOUTH
MINNEAPOLIS, MN 55408 | DR. ALPHONSE CHAPANIS
8415 BELLONA LANE
SUITE 210-BUXTON TOWERS
BALTIMORE, MD 21204 | DR. PAUL R. CHATELIER
OUSDRE
PENTAGON
WASH. D.C. 10350-2000 | MR. RAYMOND E. CHRISTEL
AFHRLMOE
BROOKS AFB, TX 73235 | DR. DAVID E. CLEMENT
DEPT. OF PSYCHOLOGY
UNIY. OF SOUTH CAROLINA
COLUMBIA, SC 19108 | DR. CHARLES CLIFTON
TOBIN HALL
DEPT. OF PSYCHOLOGY
UNIV. OF MASSACHUSETTS
AMHERST, MA 01003 | ASST. CHIEF OF STAFF FOR
RES., DEV., TEST & EVAL.
NAVAL EDUC. & TR. COM. (N-5)
NAS PENSACOLA, FL 33508 | DR. MICHAEL COLES
UNIY. OF ILLINOIS
DEPT. OF PSYCHOLOGY
CHAMPAJGN, IL 61830 | DR. ALLAN M. COLLINS
BOLT BERANEK & NEWMAN, INC.
SO MOULTON STREET
CAMBRIDGE, MA 02138 | DR. STANLEY COLLYER
OFFICE OF NAVAL TECH.
CODE 111
800 N. QUINCY ST.
ARLINGTON, VA 12117-5000 | | | DR. ALAN BADDELEY - MRC
A PPLIED PSYCHOLOGY UNIT
15 CHAUCER ROAD
CAMBRIDGE CB1 1EF
ENGLAND | DR. JAMES BALLAS
GEORGETOWN UNIVERSITY
DEPARTMENT OF PSYCHOLOGY
WASHINGTON, D.C. 10057 | DR. HAROLD BAMFORD
NAT. SCIENCE FDN.
1800 G STREET, N.W.
WASHINGTON, D.C. 18550 | DR. ISAAC BEJAR
EDUCATIONAL TESTING
SERVICE
PRINCETON, NJ 08450 | DR. ALYAH BITTNER
NAVAL BIODYNAMICS LAB.
NEW ORLEANS, LA 70189 | DR. JOHN BLAHA
DEPT. OF PSYCHOLOGY
GEORGE MASON UNIV.
4400 UNIVERSITY DRIVE
FAIRFAX, VA 22030 | SUE BOGNER, ARMY RES. INST.
ATTN: PERI-SF
SOOI EISENHOWER AV.
ALEXANDRIA, VA 12133-5600 | DR. GORDON H. BOWER
DEPT. OF PSYCHOLOGY
STANFORD UNIVERSTY
STANFORD, CA 94306 | MR. DONALD C. BURGY
GENERAL PHYSICS CORP.
10630 HICKORY RIDGE RD.
COLUMBIA, MD 21044 | DR. GAIL CARPENTER
NORTHEASTERN UNIV.
DEPT. OF MATH, 504LA
360 HUNTINGTON AVENUE
BOSTON, MA 01115 | | | DR. PHILLIP L. ACKERMAN
UNIVERSITY OF MINNESOTA
DEPARTMENT OF PSYCHOLOGY
MINNEAPOLLS, MN 53455 | DR. BETH ADELSON
DEPT. OF COMP. SCIENCE
TUFTS UNIVERSITY
MEDFORD, MA 02155 | TECHNICAL DIRECTOR,
ARAN' HUMAN ENG. LAB
ABERDEEN PROVING GROUND
MD 11005 | DR. ROBERT AHLERS
CODE N711
HUMAN FACTORS LABORATORY
NAVAL TRAINING SYSTEMS CTR.
ORLANDO, FL 13813 | DR. JOHN ALLEN
DEPARTMENT OF PSYCHOLOGY
GEORGE MASON UNIVERSITY
4400 UNIVERSITY DRIVE
FAIRFAX, VA 22030 | DR. EARL A. ALLUISI
HQ AFHRL (AFSC)
BROOKS, AFB TX 7823S | DR. JAMES ANDERSON
BROWN UNIVERSITY
CENTER FOR NEUALL SCI.
PROVIDENCE, RI 03912 | DR. NANCY S. ANDERSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF MARYLAND
CULLEGE PARK, MD 30743 | DR. ED AIKEN
NAYY PERSONNEL RAD CENTER
SAN DIEGO, CA 92157-6800 | TECHNICAL DIRECTOR, ARI
SOOI EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | | DR. RUTH KANFER
UNIV. OF MN - ELLIOTT HALL
DEPT. OF PSYCHOLOGY
75 E. RIVER ROAD
MINNEAP JUS, MN 55455 | DR. MILTON S. KATZ
ARMY RES. INST.
SOOI EISENHOWER AVE.
ALEXANDRIA, VA 11113 | DR. DEMETRIOS EARIS
GRUMMAN AEROSPACE CORP.
MS CO4-14
BETHPAGE, NY 11714 | DR. CLAYTON LEWIS
UNIY. OF COLORADO
DETT. OF COMP. SCI.
CAMPUS BOX 430
BOULDER, CO 80309 | DR. BOB LLOYD
DEPT. OF GEOGRAPHY
UNIY. OF S. CAROLINA
COLUMBIA, SC 39308 | DR. FREDERIC M. LORD
EDUC. TESTING SERY.
PRINCETON, NJ 06541 | DR. GARY LYNCH
UNIY. OF CALIFORNIA
CTR. FOR THE NEUROBIOLOGY
OF LEARNING & MEMORY
IRVINE, CA 92717 | DR. DON LYON
P.O. BOX 44
HIGLEY, AZ 85336 | DR. WILLIAM L. HALOY
CHIEF OF NAVAL ED. & TR.
NAVAL AIR STATION
PENSACOLA, FL 3350 | DR. EVANS MANDES DEPT. OF PSYCHOLOGY GEORGE MASON UNIVERSITY 440 UNIVERSITY DR. FAIRFAX, VA 22030 | |---|---|---|--|---|---|--|--|---|--| | DR. EARL HUNT
DERT. OF PSYCHOLOGY
DNIY. OF WASHINGTON
SEATTLE, WA 98105 | UR. ED HUTCHINS, UCSD
INTELLIGENT SYSTMS GROUP
INST. FOR COG. SCI (C=15)
LA JOLLA, CA 9309? | DR. ALICE ISEN
DEPT. OF PSYCHOLGOY
UNIY. OF MARYLAND
CATONSVILLE, MD 31238 | DR. DAVID KRANTZ
3 WASHINGTON SQ. VILLAGE
APT. #151
NEW YORK, NY 10012 | DR. DAVID R. LAMBERT NAVAL OCEAN SYS. CTR. CODE 411 271 CATALINA BLVD. SAN DIEGO, CA 21132-4800 | DR. PAT LANGLEY
UNIY. OF CALIFORNIA
DEPT. OF INFO. & COMP. SCI.
IRVINE, CA 97717 | DR. MARCY LANSMAN
UNIY. OF N. CAROLINA
THE L.L. THURSTONE LAB.
DAVIE HALL 013A
CHAPEL HILL, NC 27514 | DR. JILL LARKIN
CARNEGIE-MELLON UNIV.
DEPARTMENT OF PSYCHOLOGY
PITTSBURGH, PA 15113 | DR. ROBERT LAWLER
INFORMATION SCIENCES, FRL
GTE LABORATORIES, INC.
40 SYLVAN ROAD "
WALTHAM, MA 02254 | | | DR. L. E GILES
AFOSR
BOLLING AFB
WASHINGTON, DC 20332 | DR. EUGENE E. GI "YE
ONR DETACHME."!
1030 E. GREEN
PASADENA, CA 91106-3455 | DR. JOSEPH C'OGUEN
COMP. SCI. L'ABORATORY
SRI INTERN' TIONAL
333 RAVENSWOOD AVE.
MENLO PARK, CA 94035 | DR. LLOYD HUMPHREYS
UNIY. OF ILLINOIS
DEPT. OF PSYCHOLGOY
603 E. DANIEL STREET
CHAMPAIGN, IL 61830 | DR, WENDY KELLOGG
IBH T.J. WATSON RES. CTR.
P.O. BOX 118
YORKTOWN HTS., NY 10554 | DR. STEVEN W. KEELE
BERT. OF FSYCHOLOGY
UNIVERSITY OF OREGON
EUGENE, OR 97403 | | DR. DENNIS KIBLER
UNIV. OF CALIFORNIA
DEPT. OF INFO. & COMP. SCI. \
IRVINE, CA 92717 | DR. DAVID KIERAS
UNIY. OF MICH. TECH. COMM.
COLLEGE OF ENGINEERING
1113 E. ENGINEERING BLDG.
ANN ARBOR, MI. 48109 | DR. DAVID KLAHR
CARNEGIE-MELLON UNIV.
DEPARTMENT OF ISYCHOLOGY
SCHENLEY PARK
PITTSBURGH, PA 1313 | | DR. WILLIAM EPSTEIN
UNIV. OF WISCONSIN
BROGEN PSTCH. BLDG.
120 W. JOHNSON ST.
MADISON, WI 53706 | DR. R. ANDERS ERICSSON
UNIV. OF COLORADO
DEPT. OF PSYCHOLOGY
BOULDER, CO 80109 | COL DENNIS W. JARVI
COMMANDER
AFHRL
BROOKS, AFB 78335-5601 | DR. JOSEPH E. JOHNSON
ASST. DEAN-GRAD. STUDIES
COLLEGE OF SCI. & MATH
UNIV. OF SOUTH CAROLINA
COLUMBIA, SC 19108 | CDR TOM JONES
ONR CODE 125
800 N. QUINCY ST.
ARLINGTON, VA 12217-5000 | MR. DANIEL B. JONES
US NUCLEAR REG. COMM.
DIV. OF HUMAN FACTORS
SAFETY
WASHINGTON, DC 20555 | DR. DOUGLAS H. JONES
THATCHER JONES ASSOC.
P.O. BOX 6640
10 TRAFALGAR COURT
LAWRENCEVILLE, NY 0848 | DR. JANE JORGENSEN
UNIVERSITY OF OSLO
INST. OF FSYCHOLOGY
BOX 1094, BLINDERN
OSLO, NORWAY | DR. MARCEL JUST
CARNEGIE-MELLON UNIV.
DEPT. OF
PSYCHOLOGY
SCHENLEY PARE
PITTSBUGH, PA 15113 | DR. DANIEL KASSYEMAN
UNIY. OF BR. COLPSYCH.
#154-3051 MAIN MALL
VANCOUVER, BR. COLUMBIA
CANADA YET IX7 | | DR. RONALD HAMBLETON
PROF. OF EDUC. & PSYCH.
UNIV. OF MASS AMHERST
HILLS HOUSE
AMHERST, MA 01003 | DR.CHERYL HAMEL
NTSC
ORLANDO, FL 33813 | DR. P. HELMERSEN
UNIVERSITY OF OSLO
DEFT. OF PSYCHOLOGY
BOX 1094
OSLO 3, NORWAY | DR. STEVEN HILLYARD
DEPT. OF NEUROSCI.
UCSD
LA JOLLA, CA \$1093 | DR. GEOFFREY HINTON
COMP. SCIENCE DEPT.
UNIV. OF TORONTO
10 KINGS COLLEGE RD.
TORONTO, CANADA MSS 1A4 | DR. JIM HOLLAN
INTELLIGENCE SYSTEMS GRP.
INST. FOR COG. SCIENCE
UCSD | DR. JOHN HOLLAND
UNIV. OF MICHIGAN
1311 EAST ENGINEERING
ANN ARBOR, MI 43109 | DR. MELISSA HOLLAND
ARMY RES. INST. FOR THE
BEH. & SOCIAL SCIENCES
SOOI EISENHOWER AVENUE
ALEXANDRIA, YA 22333 | DR. JAMES HOWARD
DEPT. OF PSYCHOLOGY
HUMAN PERFORMANCE LAB.
CATHOLIC UNIY. OF AMERICA
WASHINGTON, DC 20064 | DR. KEITH HOLYOAK
UNIV. OF MICHIGAN
HUMAN PERF JRMANCE CTR.
339 PACKARD ROAD
ANN ARBOR, MI 48109 | | DR. RICHARD H. GRANGER
DEPT. OF COMP. SCIENCE
UNIY. CALIF. AT RVINE
IRVINE, CA 92717 | DR.STEVEN GRANT
DEPT. OF BIOLGY, NYU
1009 MAIN BUILDING
WASHINGTON SQUARE
NEW YORK NY 10003 | DR. JEROME FELDMAN
UNIVERSITY OF ROCHESTER
COMP. SCIENCE DEPT.
ROCHESTER, NY 14627 | DR. PAUL FELTOVICH
SIU SCH. OF MEDICINE
MED. EDUC. DEPT.
P.O. BOX 3936
SPRINGFIELD, IL 62708 | DR. CRAIG I. FIELDS
ARPA
1400 WILSON BLYD.
ARLINGTON, VA 12209 | DR. GAIL FLEISCHAKER
MARGULIS LAB
BIOLOGICAL SCI. CTR.
1 CUMMINGTON STREET
BOSTON, MA 02115 | DR. JANE M. FLINN
DEPT. OF PSYCHOLOGY
GEORGE MASON UNIV.
4400 UNIVERSITY DRIVE
FAIRFAX, VA 12030 | DR. MICHEL GALLAGHER
UNIY. OF NORTH CAROLINA
DEPT. OF FSYCHOLOGY
CHAPEL HILL, NC 27514 | DR. R. EDWARD GEISELMAN
DE'T. OF PSYCHOLOGY
UNIY. OF CALIFORNIA
LOS ANGELES, CA 90024 | DR. DON GENTNER
CENTER FOR HUMAN
INFORMATION PROCESSING
UNIVERSITY OF CALIFORNIA
LA JOLLA, CA 93093 | | DAIRA PAUISON
CODE SI-TRAINING STSTEMS
NAVT PERSONNEL RAD CTR.
SAN DIEGO, CA 91151-4800 | DR. HAROLD F. O'NEIL, JR.
SCHOOL OF EDUC, WPH 801
DEPT, OF EDUC, PSYCH.
& TECHNOLOGY, USC
LOS ANGELES, CA 90089-0031 | DR. MICHAEL OBERLIN
NAVAL TRAINING SYS. CTR.
CODE 711
ORLANDO, FL 33813-7100 | DR. STELLAN OHLSSON
LEARNING R&D CTR.
UNIV. OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15313 | DIR., RES. PROG., ONR
800 NORTH QUINCY ST.
ARLINGTON, VA 11217-5000 | MR. RAYMOND C. SIDORSKY
ARMY RESEARCH INST.
SOOI EISENHOWER AVE.
ALEXANDRIA, VA 22333 | DR. HERBERT A. SIMON
DEPT. OF PSYCHOLOGY
CARNEGIE-MELLON UNIV.
SCHENLEY PARK
PITTSBURGH, PA 15313 | DR. ZITA M. SIMUTIS
INSTRUCTIONAL TECH.
SYSTEMS AREA, ARI
SOOI EISENHOWER ST.
ALEXANDRIA, VA 22333 | DR. H. WALLACE SINAIKO
MANPOWER RES. & ADV. SERV.
SMITHSONIAN INSTITUTE
801 N. PITT STREST
ALEXANDRIA, VA 22314 | DR. DEREE SLEMAN
STANFORD UNIVERSITY
SCHOOL OF EDUCATION
STANFORD, CA 94305 | |--|--|---|--|--|--|---|--|---|--| | DR. TOM MORAN
XEROX PARC
3333 COYOTE HILL ROAD
PALO ALTO, CA 94394 | MR. MELVIN D. MONTEMERLO
NASA HEADQUARTERS
RTE-6
WASHINGTON, DC 10546 | DR. WILLIAM MONTAGUE
NPRDC CODE 13
SAN DIEGO, CA 92153-6800 | ONR, CODE 1142PT
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000
(6 COPIES) | DR. JESSE ORLANSKY
INST. FOR DEFENSE ANALYSIS
1801 N. BEAUREGARD ST.
ALEXANDRIA, VA 21311 | DR. MARTHA POLSON
DEPT. OF PSYCHOLOGY
CAMPUS BOX 346
UNIVERSITY OF COLORADO
BOULDER, CO 80309 | DR. STEVEN E. POLTROCK
MCC
9430 RESEARCH BLVD.
ECHELON BLDG. #1
AUSTIN, TX 78759-4509 | DR. LAUREN RESNICK
LEARNING RAD CENTER
UNIV. OF PITTSBURGH
3939 O'HARA STREET
PITSBURGH, PA 15313 | DR. FRED REIF
PHYSICS DEPARTMENT
UNIY. OF CALIFORNIA
BERKELEY, CA 94710 | DR. JAMES A. REGGIA
UNIV. OF MD SCH. OF MED.
DEPARTMENT OF NEUROLOGY
23 S. GREENE STREET
BALTIMORE, MD 31301 | | DIRECTOR, TRAINING LAB.
NPRDC (CODE 05)
SAN DIEGO, CA 93153-4800 | DIR. HUMAN FACTORS & & ORGANIZATIONAL SYS. LAB NPRDC (CODE 07) SAN DIEGO, CA 92153-6800 | FLEET SUPPORT OFFICE,
NPRDC (CODE 301)
SAN DIEGO, CA 92152-6800 | COMMANDING OFFICER
MAYAL RES. LAB.
CODE ストラフ
WASHINGTON, DC 20390 | DR. JAMES L. MCGAUGH
CTR. FOR NEUROBIOLOGY OF
LEARNING & MEMORY
IRVINE, CA 92717 | ONR, CODE 1113
800 N. QUINCY STREET
ARLINGTON, VA 11117-5000 | MATHEMATICS GROUP, ONR
CODE IIIIMA
800 NORTH QUINCY ST.
ARLINGTON, VA 12117-5000 | ONR - CODE 1141NP
800 N. QUINCY STREET
ARLINGTON, VA 33217-5000 | ONR, CODE 1143
800 N. QUINCY ST.
ARLINGTON, VA 12217-5000 | ONR, CODE 1143EP
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000 | | DR. SANDRA P. MARSHALL
DEPT. OF PSYCHOLOGY
SAN DIEGO STATE UNIV.
SAN DIEGO, CA 91181 | DR.RICHARD E. MAYER
DEPT. OF PSYCHOLOGY
UNIV. OF CALIFORNIA
SANTA BARBARA, CA 93106 | JAMES MCBRIDE, FSYCH. CORP
CIO HARCOURT, BRACE,
JAVANOVICH, INC.
1250 WEST 6TH STREET
SAN DEIGO, CA 92101 | DR. JAY MCCLELLAND
DEPT. OF PSYCHOLOGY
CARNEGIE-MELLON UNIV.
PITTSBURGH, PA 15213 | SPEC. ASST. FOR MARINE
CORP MATTERS
ONR CODE OOMC
800 N. QUINCY ST.
ARLINGTON, VA 33217-5000 | DR. GLEN OSGA
NOSC, CODE 441
SAN DIEGO, CA 92153-4800 | DR. JUDITH ORASANU
ARMY RESEARCH INST.
SOOI EISENHOWER AVE.
ALEXANDRIA, VA 22333 | DR. ROBERT F. PASNAK
DEPT. OF PSYCHOLOGY
GEORGE AAASON UNIV.
4400 UNIVERSITY DRIVE
FAIRFAX, VA 22030 | PROF.SEYMOUR PAPERT
30C-109
MIT
CAMBRIDGE, MA 03139 | DIR. TECH. FROGRAMS ONR
CODE 13
800 NORTH QUINCY ST.
ARLINGTON, VA 2217-5000 | | DR. ALAN M. LESGOLD
LEARNING RED CENTER
UNIV. OF PITYBURGH
PITYSBURGH, PA 15260 | DR. JIM LEVIN
DEPT. OF EDUC. PSYCH.
210 EDUCATION BUILDING
1310 SOUTH SIXTH STREET
CHAMPAIGN, IL 61820-6990 | DR. JOHN LEVINE
LEARNING RAD CENTER
UNIV. OF PITYSBUGH
PITYSBURGH, PA 15360 | DR. MICHAEL LEVINE
EDUCATIONAL PSYCHOLOGY
210 EDUCATION BLDG.
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61801 | DR. JAMES MCMICHAEL
ASST. FOR MTT RES., DEV.
AND STUDIES, OP 0187
WASHINGTON, DC 20370 | DR. GAIL MCKOON, CASI
FSYCHOLOGY KRESGE #230
NORTHYESTERN UNIV.
1859 SHERIDAN ROAD
EVANSTON, IL 60201 | DR. JOE MCLACHLAN
NAVY FERSONNEL RAD CTR.
SAN DIEGO, CA 92152-6800 | DR. GEORGE A. MILLER
DEPT. OF PSYCHOLOGY
GREEN HALL, PRINCETON
PRINCETON, NJ 08540 | DR. BARBARA MEANS
HUMAN RES. RES. ORG.
1100 SOUTH WASHINGTON
ALEXANDRIA, VA 11314 | DR. ROBERT MISLEVY
EDUCATION TESTING SERV.
PRINCETON, NJ 08541 | | DR. RONALD KNOLL
BELL LABORATORIES
MURRAY HILL, NJ 07974 | DR. SYLVAN KORNBLUM
UNIY. OF MICHIGAN
MENTAL HEALTH RES. INST.
205 WASHTENAW PLACE
ANN ARBOR, MI 48109 | DR. STEPHEN KOSSLYN
HARVARD UNIVERSITY
1236 WILLIAM JAMES HALL.
33 KIRKLAND ST.
CAMBRIDGE, MA 02138 | DR. KENNETH KOTOVSKY
DEPT. OF PSYCHOLOGY
COMM. COLLEGE OF ALLEGHENY
800 ALLEGHENY A VENUE
PITTSBURGH, PA 15333 | DR. RANDY MUMAW
PROGRAM MANAGER
TRAINING RES. DIVISION
1100 S. WASHINGTON
ALEXANDRIA, VA 23314 | DR. ALLEN MUNRO
BEH. TECHNOLOGY
LABORATORIES - USC
1845 S. ELENA AVE., ATH FL.
REDONDO BEACH, CA 90177 | DIR., MANPOWER & PERS. LAB.
NPRDC (CODE 06)
SAN DIEGO, CA 92152-6800 | DR. RICHARD NISBETT
UNIY. OF MICHIGAN
INST. FOR SOC. RES.
ROOM S161
ANN ARBOR, MI 48109 | DR. MARY JO NISSEN
UNIY. OF MINNESOTA
NYIB ELLIOTT HALL
MINNEAPOLIS, MN 55455 | DEPUTY TECHNICAL DIRECTOR
NPRDC CODE 01A
SAN DIEGO, CA 92153-4800 | | DR. HOWARD WAINER
DIV. OF PSYCH. 4
EDUC. TESTING SERV.
PRINCETON, NJ 08541 | DR. GIL RICARD
MAIL STOP CO4-14
GRUMMAN AEROSP. CORP.
BETHPAGE, NY 11714 | DR. DAVID RUMELHART
CENTER FOR HUMAN
INFORMATION PROC.
UNIV. OF CALIF. | | DR. ANDREW M. ROSE
AM. INST. FOR RES.
1055 THOMAS JEFFERSON ST., NW
WASHINGTON, DC 20007 | DR. WM. B. ROUSE
SEARCH TECH, INC.
35-B TECHNOLOGY PKAT1.
#ORCROSS, GA 30093 | DR. E. L. SALTZMAN
HASKINS LABSORATORIES
270 CROWN STREET
NEW HAVEN, CT 06510 | DR. DAVID J. WEISS
N660 ELLIOTT HALL
UNIV. OF MINNESOTA
PJ. S. RIVER ROAD
MINNEAPOLIS, MN 53455 | DR. JOE YASATUKE
AFHRLIRT
LOWRY AFB, CO 80330 | DR. SHIH SUNG WEN
JACKSON STATE UNIY.
JASESON, MS 19317 | |---|--
--|--|--|---|--|---|---|--| | DR. K. TATSUOKA
CERL
353 ENGINEERING RES. LAB.
URBANA, IL 61801 | DR. MARTIN A. TOLCOTT
3001 VEAZEY TERR., NW
APT. 1617
WASHINGTON, DC 20008 | DR. ROBERT TSUTAKAWA
UNIVERSITY OF MISSOURI
DEPT. OF STATISTICS
323 MATH SCIENCES BLDG.
COLUMBIA, MO 65311 | DR. 2ITA E. TYER
DEPT. OF PSYCHOLOGY
GEORGE MASON UNIVERSITY
4400 UNIVERSITY DRIVE
FAIRFAX, VA 22030 | HQ - US MARINES
CODE MPI - 10
WASHINGTON, DC 20380 | DR. AMOS TVERSKY
STANFORD UNIVERSITY
DEPT. OF PSYCHOLOGY
STANFORD, CA 94385 | DR. JAMES TWEEDDALE
TECHNICAL DRECTOR
NAVY FERSONNEL RAD CTR.
SAN DIEGO, CA 91151-6800 | DR. T. B. SHERIDAN
DEPT. OF MECH. ENG.
MIT
CAMBRIDGE, MA 01139 | DR. HEATHER WILD
NAVAL AIR DEV. CENTER
CODE 6021
WARMINSTER, PA 18974-5000 | DR. JOSEPH L. YOUNG
MEMORY & COG. PROCESSES
NATIONAL SCIENCE FDN.
WASHINGTON, DC 10550 | | DR. KATHRYN SPOEHR
BROWN UNIVERSITY
DEPT. OF PSYCHOLOGY
PROVIDENCE, RI 03913 | DR. ROBERT STERNBERG
DEPT. OF PSYCHOLOGY
YALE UNIVERSITY
BOX 11A, YALE STATION
NEW HAVEN, CT 06330 | JAMES J. STASZEWSKI
CARNEGIE-MELLON UNIVERSITY
DEFT. OF PSYCHOLOGY
SCHENLEY PARK
PITYSBURGH, PA 15313 | DR. DOUGLAS TOWNE
BEHAVIORAL TECH. LABS
184S S. ELENA AVENUE
REDONDO BEACH, CA 90171 | DR. MAURICE TATSUOKA
220 EDUCATION BLDG.
1310 S. SIXTH ST.
CHAMPAIGN, 1L 61820 | DR. RICHARD F. THOMPSON
STANFORD UNIVERSITY
DEPT. OF PSYCHOLOGY
BLDG. 4301-JORDAN HALL
STANFORD, CA 94305 | MR. BRAD SYMPSON
NAVY PERSONNEL RAD CTR.
SAN DIEGO, CA 92153-6800 | DR. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIY. OF TENNESSEE
KNOXVILLE, TN 37916 | DR. DONALD RUBIN
STAT. DEPT., HARVARD
SCIENCE CTR., RM. 608
I OXFORD STREET
CAMBRIDGE, MA 01138 | DR. ERNST Z. ROTHKOPF
AT&T BELL LABORATORIES
ROOM 1D-456
600 MOUNTAIN AVENUE
MURRAY HILL, NJ 07974 | | DR. EDWAKP E. SMITH OUT BERANEK & NEWMAN, INC. SO MOULTON STREET CAMBRIDGE, MA 02138 | DR.ALFRED F.SMODE
SENIOR SCIENTIST
CODE 07A
NAVAL TRAINING SYS.CTR.
ORLANDO, FL 33813 | DR. ROBERT F. SMITH DEPT. OF PSYCHOLOGY GEORGE MASON UNIV. 4400 UNIVERSITY DR. FAIRFAX, VA 22030 | DR. LINDA B. SMITH
DEPT. OF PSYCHOLOGY
INDIANA UNIVERSITY
BLOOMINGTON, IN 47405 | DR. RICHARD E. SNOW
DEPT. OF FSYCHOLOGY
STANFORD UNIVERSITY
STANFORD, CA 94306 | DR. TED STEINKE
DEPT. OF GEOGRAPHY
UNIY. OF S. CAROLINA
COLUMBIA, SC 19108 | DR. MICHAEL I. TURVEY
HASKINS LABOATORY
170 CROWN STREET
NEW HAVEN, CT 06510 | DR. DAVID VALE
ASSESSMENT SYSTEMS CORP.
1133 UNIVERSITY AVE.
SUITE 310
ST. PAUL, MN SS114 | DR. KURT VAN LEHN
CARNEGIE "MELLON UNIV.
DEPT. OF PSYCHOLOGY
SCHENLEY PARK
PITTSBURCH, PA 15313 | DR. JERRY VOGT
NAVY PERSONNEL RAD CTR.
CODE 51
SAN DIECO, CA \$1153-4600 | | DR. LYNNE REDER
DEPT. OF PSYCHOLOGY
CARNEGIE-MELLON UNIV.
SCHENLEY PARK
PITTSBURGH, PA 15313 | DR. MARK D. RECKASE
ACT
P.O. BOX 168
10WA CITY, IA 53243 | DR. MARY C. POTTER
DEPT. OF PSYCHOLOGY
MIT (E-10-031)
CAMBRIDGE, MA 03139 | DR. JOSEPH PSOTKA
ATTW: PERI-IC
ARMY RESEARCH INST.
SOOI EISENHOWER AVE.
ALEXANDRIA, VA 23333 | DR. KARL PRIBRAM
STANFORD UNIVERSITY
DEPT. OF PSYCHOLOGY
BLDG. 4201 - JORDAN HALL
STANFORD, CA 9430S | DR. DANIEL REISBERG
DEPT. OF PSYCHOLOGY
NEW SCHOOL FOR SOC. RES.
65 FIFTH AVENUE
NEW YORK, NY 10003 | DR. STEVE SUOMI
NIH BLDG. 31
ROOM B18-15
BETHESDA, k.D 20205 | DR. H. SWAMINATHAN
LAB. OF PSYCHOMETRIC &
EVALUATION RESEARCH
UNIY OF MASSACHUSETTS
AMHERST, MA 01003 | | DR. JOHN TANGNEY
AFOSRINL
BOLLING AFB, DC 10331 | | DR. JAMES PAULSON
DEPT. OF PSYCHOLOGY
PORTLAND STATE UNIVERSITY
P.O. BOX 751
PORTLAND, OR 97307 | DR. PETER POLSON
UNIVERSITY OF COLORADO
DEPT. OF PSYCHOLOGY
BOULDER, CO 80309 | DR. JAMES W. PELLEGRINO
UC - SANTA BARBARA
DEPT. OF PSYCH,
SANTA BARBARA, CA 93106 | DR. NANCY PENNINGTON
UNIVERSITY OF CHICAGO
GRAD. SCH. OF MED.
1101 E. 58TH ST.
CHICAGO, IL 60637 | DR. RAY PEREZ
ARI (PERI-II)
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 3333 | DR.STEVEN PINKER
DEPT. OF PSYCHOLOGY
E10-018 MIT
CAMBRIDGE, MA 02139 | DR. SAUL STERNBERG
UNIY. OF PENNSYLVANIA
DEPT. OF PSYCHOLOGY
3815 WALNUT STREET
PHILADELPHIA, PA 19104 | DR. ELLIOT SOLOWAY
YALE UNIVERSITY
COMPUTER SCI. DEPT.
P.O. BOX 31S8
NEW HAVEN, CT 06330 | DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
19 MOULTON ST.
CAMBRIDGE, MA 02238 | DR. PAUL J. STICHA
TRAINING RES. DIV.
HUMBRO
1100 S. WASHINGTON
ALEXANDRIA, VA 23314 | | ERIC FACILITY ACQUISTTIONS
4833 RUGBY AFENUE
BETHESDA, MD 20014 | DR. BETH WARREN
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 03138 | | | | | | | | | |---|--|--|---|---|--|--|---|---|--| | DR. JOEL DAVIS
ONR, CODE 1141NP
800 NORTH QUINCY ST.
ARLINGTON, VA 11217-5000 | DR. HANS-WILLI SCHROIFF INST. FUER PSYCHOLOGIE DER RWTH AACHEN AAGERSTRASS ZWISCHEN 17 U. 19 5100 AACHEN, WEST GERMANY | | | | | | | | | | DR. JAIMS CARBONELL
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
PITTSBURGH, PA 1513 | J. D. FLETCHER
1931 CORSICA STREET
VIENNA, VA 13180 | DR. JOHN R. FREDERIKSEN
BOLT BERLNET & NEWMAN
50 MOULTON STREET
CAMBRIDGE, MA 02138 | | | | | | | | | DR. KEITHER WESCOURT
FMC CORPORTAION
CENTRAL ENG. LABS.
1185 COLEMAN AVE., BOX 580
SANTA CLARA, CA 95053 | DR. NORMAN M. WEINBERGER
UNIY. OF CALIF.
CTR. FOR THE NEUROBIOL.
OF LEARNING A MEMORY
IRVINE, CA 92717 | DR. DOUGLAS WETZEL.
CODE 12
NAVY PERS. RAD CTR.
SAN DIEGO, CA 91151-6800 | DR. BARBARA WHITE
BOLT BERANEK & NEWMAN, INC.
10 MOULTON ST.
CAMBRIDGE, MA 02238 | DR. BARRY WHITSEL
UNIV. OF NC
DEPT. OF PHYSIOLOGY
MEDICAL SCHOOL
CHAPEL HILL, NC 27514 | DR. CHRISTOPHER WICKENS
DRPT. OF PSYCHOLOGY
UNIY. OF ILLINOIS
CHAMPAIGN, IL 61820 | DR. STEVEN ZORNETZER
ONR, CODE 1140
800 N. QUINCT ST.
ARLINGTON, VA 11117-5000 | DR. MICHAEL I. POSNER
UNIVERSITY OF OREGON
DEPT. OF PSYCHOLOGY
EUGENE, OR 97403 | CAPT. P. MICHAEL CURRAN
ONR, CODE 135
800 N. QUINCY ST.
ARLINGTON, VA 22117-5000 | DR. MARSHALL J. FARR
1530 NORTH VERNON ST.
ARLINGTON, VA 21107 | | DR. ROBEKT A. WISHER
U.S. ARAM INST. FOR THE
BEH. 4 SOC. SCIENCES
5001 EISENHOWER AVENUE
ALEKANDRIA, YA 22333 | DR. MARTIN F. WISKOFF
NAVT PERSONNEL RAD CTR.
SAN DIEGO, CA 92153-4800 | MR. JOHN H. WOLFE
NAVI PERSONNEL RAD CTR.
SAN DIEGO, CA 92152-4800 | GEORGE WONG, BIOSTATISTICS
MEMORIAL SLOAN-KETTERING
CANCER CENTER
1175 YORK AVENUE
NEW YORK, NY 100 R.1 | DR. DONALD WOODWARD
OFFICE OF NAVAL RESEARCH
CODE 1141NP
800 NORTH CUINCY STREET
ARLINGTO', VA 11117-5000 | DR. WALLACE WULFECK, III
NAVY PERS. RAD. CENTÉR
SAN DIEGO, CA 93153-4800 | MR. CARL YORK
SYSTEM DEV. FDN.
181 LYTTON AVENUE
SUITE 210
PALO ALTO, CA 94301 | DR. DAVID NAVON
INST. FOR COGNITIVE SCI.
UNIV. OF CALIFORNIA
LA JOLLA, CA 92093 | DR. ROBERT SASMOR
ARMY RES. INSTITUTE
5001 EISENHOWER AVE.
ALEKANDRIA, VA 21333 | DEFENSE TECH. INFO. CTR.
CAMERON STATION, BLDG. S
ALEXANDRIA, VA 11314
ATTN: TC | | DR. MICHAEL I. SAMET
PERCEPTRONICS, INC.
4271 VARIEL AVENUE
WOODLAND HILLS, CA 91364 | DR. ARTHUR SAMUEL
YALE UNIVERSITY
DEPT. OF PSYCHOLOGY
BOX 11A, YALE STATION
NEW HAVEN, CT 06520 | DR. ROGER SCHANK
YALE UNIVERSITY
COMP. SCI. DEPARTMENT
NEW HAVEN, CT 06530 | DR. WALTER SCHNEIDER
LEARNING RAD CTR.
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15360 | DR. MICHAEL G. SHAFTO
ONR CODE 1142PT
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000 | DR. JANET SCHOFIELD
LEARNING RAD CENTER
UNIV. OF PITTSBURGH
PITTSBUGH, PA 15360 | DR. ROBERT J. SEIDEL
US ARAG RES. INST.
5001 EISENHOWER AVE.
ALEXANDRIA, VA 22333 | CHIEF OF NAVAL ED. &
TR.
LIAISON OFFICE
AIR FORCE HUMAN RES. LAB.
OPERATIONS TRAINING DIV.
WILLIAMS AFB, AZ 85214 | DR. DONALD A. NORMAN
INST. FOR COG. SCI.
UNIV. OF CALIFORNIA
LA JOLLA, CA 93093 | DR. MICHAEL J. IYDA
NAVAL POSTGRADUATE SCHOOL
CODE SICK
MONTERET, CA 93943-5100 |